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Abstract. The transfer-matrix method is applied to quasi-one-dimensional and one-dimensional
disordered systems with long-range interactions described by band random matrices. We
investigate the convergence properties of the entire Lyapunov spectra of finite samples as a
function of the bandwidth and of the sample length. Different scaling laws are found with
respect to what is suggested by the analysis of the localization properties of the eigenfunctions.
Our results, at variance with the Anderson model, suggest that the contacts of a finite sample
with the leads play a prominent role.

1. Introduction

Lyapunov exponents represent one of the main tools in the study of both disordered and
dynamical systems. In the former case, they arise from the application of the transfer-
matrix method and allow one determine, e.g., the localization length, which corresponds to
the inverse of the minimum positive Lyapunov exponent. In the latter case, starting from the
evolution in the tangent space, one is interested in determining, among other quantities, the
Kolmogorov–Sinai entropy, which can be expressed as the sum of the positive exponents.

Recently, growing attention has been given to the study of high-dimensional systems
such as coupled maps, chains of nonlinear oscillators, dynamical models with delayed
feedback, disordered systems in two and three dimensions, and one-dimensional models
with long-range interaction. In all of these cases, the so-called Lyapunov spectrum is defined
as the sequence of the Lyapunov exponentsγi (ordered according to increasing/decreasing
size) represented as a function ofi/D, whereD is the total number of exponents. Many
numerical simulations and analytical arguments indicate the existence of a limit spectrum
for D → ∞ (see, e.g., [1] and references therein). Compared to the case for the largest
and smallest exponents, for which some rigorous mathematical results have been obtained,
the properties of the ‘bulk’ of the Lyapunov spectrum are less well understood.

In reference [2], the scaling properties of the Lyapunov spectrum were studied for
disordered systems described by infinite band random matrices (BRM). Such matrices have
been extensively investigated in connection with one-dimensional Anderson-type models
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with long-range random hopping, as well as with quasi-one-dimensional thin wires (see,
e.g., [3] and references therein). In particular, the scaling properties of the eigenfunction
localization lengths proved to be in accordance with the predictions [4, 5] based on results
for dynamical quantum models that are strongly chaotic in the classical limit.

Since any disordered sample used in practical applications is finite, it is useful to study
not only the asymptotic value of the Lyapunov exponents but also the so-called effective
exponents, i.e. the exponents actually observed for samples of finite lengthN . They
represent a useful tool for quantifying the effect of the coupling with the leads, which
is definitely one of the major ingredients contributing to finite-size corrections. Moreover,
information about the statistical properties of effective Lyapunov exponents can shed further
light on, e.g., the fluctuations of the conductance in the metallic regime [6–10].

In this paper, we investigate the convergence properties of the effective Lyapunov
exponents of finite BRMs associated with finite samples embedded in an otherwise perfectly
ordered lattice. Our investigation suggests that different parts of the spectrum exhibit
different convergence properties. This is particularly clear from our data for the maximal
Lyapunov exponent as compared to the bulk of the spectrum.

The outline of the paper is as follows. In section 2 the connection between the
Hamiltonian band matrix model and the conductance of disordered samples is summarized
with the purpose of introducing the appropriate Lyapunov exponents. In section 3, we
recall some known results from scaling theory for similar problems: they will represent the
starting point for the numerical investigation carried on in the following section, section 4.
Some final comments and conclusions are presented in the last section, section 5.

2. The model

The general model describing quasi-one-dimensional or one-dimensional systems with long-
range hopping is given by the Schrödinger equation

i
dcn(t)

dt
=

n+b∑
m=n−b

Hn,mcm(t) (1)

wherecn(t) is the probability amplitude for an electron to be at siten andHn,m is a symmetric
band random matrix. Specifically, the entries ofHn,m are independent Gaussian variables
with zero mean and varianceσ 2 = 1+ δn,m for |n − m| 6 b, while the matrix elements
outside the band are all set equal to zero. In one-dimensional geometry, the parameterb

defines the range of hopping between neighbouring sites, while in the quasi-one-dimensional
interpretation, this parameter has the meaning of the number of transverse channels for the
scattering waves along a thin wire [3].

The insertion of a disordered sample of lengthN into a perfectly ordered lattice requires
the definition of two proper leads at the extrema of the sample. At variance with the standard
Anderson model, where only nearest-neighbour couplings are present, our model has long-
range hopping terms that allow some freedom in the choice of the structure of the leads.
A reasonable choice consists in assuming a band structure in the ordered lattice with the
same widthb, and the hopping elementsHn,m all set equal toU (for the sake of simplicity
we chooseU = 1), while the hopping amplitudes coupling the leads with sample sites are
randomly chosen with the same distribution as in the core of the sample (the intermediate
regions connecting the samples with the leads will hereafter be called ‘contacts’: they extend
overb sites). As an example, we show below the Hamiltonian structure forb = 2 (asterisks
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indicate random elements):

. . . . . . 1 1
1 1 1 1 ∗

1 1 1 ∗ ∗
∗ ∗ ∗ ∗ . . .

. . . ∗ ∗ ∗ ∗
∗ ∗ 1 1 1
∗ 1 1 1 . . . .

Accordingly, a finite sample of lengthN consists in practice of an entirely disordered bulk
of lengthN − 2b and two partially disordered contacts each of lengthb.

The eigenvalue equation is obtained by inserting the standardansatz cn(t) =
exp(−iEt)ψn in equation (1). The resulting equation can be cast in the form of a 2b-
dimensional linear map along the spatial direction:

Ψ(n+ 1) = T(n)Ψ(n) (2)

where9i(n) ≡ ψn+b−i and the matrixT(n) is defined as follows:

[T(n)]1,j = 1

Hn,n+b
(δj,bE −Hn,n+b−j )

[T(n)]i,j = δi−1,j [T(n)]i,2b = 0 26 i 6 2b. (3)

In this picture, an eigenstate of equation (1) can be treated as a ‘trajectory’ of the random
map (3), and its localization properties are determined by the Lyapunov exponents.

In a previous paper [2] we investigated the shape of the Lyapunov spectrum in the limit
of infinitely extended disordered samples. Here, since we are interested in finite samples
of sizeN , one should introduce the transfer matrixT = ∏N

n=1 T(n), which couples two
opposite leads. As was shown in [6], the matrixT satisfies the following property, not
shared by the single matrixT(n):

TtΣT = Σ Σ =
(

0 S
−St 0

)
(4)

whereS is a lower triangular matrix of sizeb, with Sij = 1, i > j . In fact, this property
corresponds to the flux conservation in the process of the scattering of a wave through the
sample.

It is convenient to describe the scattering states in terms of ‘eigenfunctions’ of the free
dynamics occurring in the ordered region. The eigenvalues of the corresponding Hamil-
tonian, defined by setting all random elements equal to 1, are

E(p) = 1+ 2 cosp + · · · + 2 cos(bp) = sin[(2b + 1)(p/2)]

sin(p/2)
p ∈ (−π, π) (5)

while the corresponding eigenvectors are

ψn(p) = 1√
2π

e±inp. (6)

For any fixed energy valuẽE, there areν 6 b pairs of opposite real solutions of the equation
E(pk) = Ẽ. Each pair corresponds to an open channel, or propagation mode, sustaining
waves with opposite velocities. In this paper, we limit ourselves to studying the case where
Ẽ = 0, in which all channels are open, i.e.ν = b, and the admissible momenta are equally
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spaced. In what follows we shall assume that the momentapk are ordered in such a way
that positive velocities correspond to the firstb elements:

p1, p2, . . . , pb,−p1, . . . ,−pb pk = (−1)k
2πk

2b + 1
k = 1, . . . , b. (7)

In fact, one can see that the corresponding velocitiesv(p) = dE/dp for E = 0 are given
by

vk = 2b + 1
/(

2 sin

[
πk

2b + 1

])
vk+b = −vk k = 1, . . . , b. (8)

Instead of defining the initial state in the scattering process in terms of the probability
amplitude at 2b consecutive sites (as required by the standard representation of the vector
Ψ(n)), one can refer to the 2b amplitudes of the plane waves sustained by the ordered
lattice. It can easily be checked that the transformation from the momentum to the position
representation is defined by the matrix

[U(n)]j,k = exp(i(j + n)pk) (9)

and hence that scattering matrix can be written as

M = Z−NU(0)−1TU(0) (10)

whereZ is a diagonal matrix whose entries,Zj,j = eipj , account for the phase difference
between the sitesn = 1 andn = N . The matrixM has an almost symplectic structure;
indeed, it satisfies the relationM†VM = V, whereV is a diagonal matrix withVj,j = vj of
the same order as before [6].

For the determination of the conductance, one needs to introduce the matrixF conn-
ecting flux amplitudes:

F = ΓMΓ−1 (11)

where the diagonal 2b × 2b matrix Γ is defined as0i,j = δi,j
√|vi |. The above trans-

formation is equivalent to the normalization of the scattering matrix, and it takes into account
the fact that the waves propagate with different velocities in different open channels.

The transfer matrixF connecting the incoming with the outgoing flux amplitudes in the
various channels turns out to be symplectic, as it satisfies the relation

F†σ3F = σ3 (12)

whereσ3 is the generalized Pauli matrix:

σ3 =
(

1 0
0 −1

)
(13)

and 1 denotes ab × b identity matrix. Notice that condition (12) follows essentially from
the flux conservation, i.e. from the unitarity of the scattering matrix.

The matrixF is the key ingredient for the determination of the conductivity from the
Landauer formula (see, e.g., [7] for a general derivation and [10] for an application in the
specific case of BRMs). More precisely, it is necessary to compute the Lyapunov exponents

γi(N) = 1

2N
ln λi(N) (14)

whereλi(N) denote the (real) eigenvalues of the matrixF†F. The Lyapunov exponents
will be conventionally ordered from the maximum to the minimum one; that is,γ1(N) >

γ2(N) > · · · > γi(N) > · · · > γ2b(N). Because of the symplectic structure ofF, the



Finite-size corrections to Lyapunov spectra 5969

exponents are arranged inb pairs with opposite values (γi(ν) = −γ2b−i+1(ν)); for this
reason, in the following, we will always report only the positive exponents (i.e.i 6 b).

In the limit of infinitely long samples (N → ∞), the ergodic multiplicative theorem
[11] ensures that the statistical fluctuations of the effective Lyapunov exponents vanish: in
fact, the quantitiesγi(∞) are, by definition, the Lyapunov exponents of the infinite product
of matrices composingF. Moreover, in the limitN → ∞, the effect of the similarity
transformations involved in the definition (10), (11) ofF becomes negligible, so the values
of γi(N) converge also to the Lyapunov exponents of the matrixT. However, as long
as one deals with finite samples, the effective Lyapunov exponentsγi(N) depend on the
realization of the disorder. It is therefore convenient to averageγi(N) over the ensemble
of all possible realizations. In order not to overload the notation, this average will always
be understood.

3. Scaling behaviour

Let us first discuss the scaling behaviour of the Lyapunov exponents for the Anderson
model. In fact, the transfer-matrix approach reveals a clear analogy between the physical
problem considered in the present paper and the Anderson localization in a stripe. Indeed,
the bandwidthb plays the same role as the strip widthLt in the sense that both define the
number of possible channels for electronic conductance. It is important to note, however,
that for the analogy to be kept as strict as possible, one must assume that the Lyapunov
exponents are measured in units of the interaction range (or, equivalently, in mean free
paths), i.e. by referring to the lattice spacing in the Anderson problem and tob in the
present case. This feature was already noticed in [2], where it was pointed out that the
Lyapunov spectra of BRM, measured in natural units, scale as 1/b.

One cannot straightforwardly apply to the present case the single-channel scaling theory
in order to infer localization properties for different disorder amplitudes and ‘transverse
widths’, since there is no proper localization length in the thermodynamic limitb → ∞.
In fact, while it is conjectured that the minimum Lyapunov exponent is finite in the limit
of infinitely large stripes (Lt → ∞) in the Anderson problem (in the insulating regime),
it vanishes as 1/b for band random matrices, even using the appropriate spatial scale.
Indeed, let us recall that the localization length for the eigenfunctions of energyE is
l∞(E) = (2b2/3)[1− (E2/(8b))] [3], i.e. it diverges asb2 over the whole energy range.

Another feature of the scaling behaviour that has been investigated in the Anderson
problem concerns the dependence of the Lyapunov exponents on the sample length for
fixed transverse widthLt . In reference [9] it was found that the scale dependence for the
Anderson model has the form

γj (N) = γj (∞)Fj (γj (∞)N) (15)

independently of the disorder amplitude. In the context of BRMs, the above relation is
somewhat trivial, since the amplitude of the disorder can be scaled out. This is immediately
realized by noticing that the elements of the transfer matrices involve only ratios of the
disorder terms (apart from the energy term which is the only contribution that needs to be
appropriately rescaled), thus revealing that their absolute scale is irrelevant.

Meanwhile, a different approach has been suggested for describing scaling properties
in BRMs without leads. Such a procedure involves the introduction of the generalized
localization lengthlq(N) [5] of a generic eigenvector:

lq(N) = exp〈Hq〉 (16)
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where

H1 = −
∑
n

|ψn|2 ln(|ψn|2)

Hq = 1

1− q lnPq Pq =
N∑
n=1

|ψn|2q q > 2
(17)

andψn is the nth component of an eigenvector of the matrix. The averaging ofHq in
equation (16) is performed over the disorder and over the eigenstates corresponding to
energies within a prespecified window. It was numerically shown in [5] and analytically
proved in [3] that the rescaled localization lengthlq(N)/lGOEq (N), wherelGOEq corresponds
to full random matrices, depends only on the ratiol∞/N . More detailed analytical studies
[3] have revealed that the scaling behaviour forlq(N) is very close to the form

l−1
q (N) = l−1

q (∞)+ Cq/N (18)

for q 6= 2, while it holds exactly forq = 2. Notice that, in the latter case, the localization
length l2(N) is related to the inverse participation ratio which has the simple physical
meaning of the probability for a quantum particle to return to the initial position after
infinite time. The second term in the r.h.s. of expression (18) represents the normalization
factor lGOEq (N): it was found both numerically and analytically that the coefficientCq is
always positive and independent ofN . The positiveness ofCq indicates that the finite-length
estimates of the localization length converge to its asymptotic valuelq(∞) from above.

Let us finally mention that the scaling relation, equation (18), appears to be rather
general, as revealed by numerical simulations performed for many other models, like the
kicked rotator [4, 12], the one-dimensional Anderson and Lloyd models [13], and one-
dimensional dimer models [14, 15].

4. Numerical analysis

4.1. The method

As is mentioned in section 2, the conductance of a finite sample can be determined from
the eigenvalues ofF†F. For this reason, here we study the convergence properties of the
latter quantities by varying the sample sizeN and the bandwidthb. The standard technique
for the determination of the eigenvalues runs into trouble even for relatively short samples
because of numerical inaccuracies due to the small denominators in equation (3). Such a
difficulty can be overcome by suitably modifying the standard algorithm for the computation
of the Lyapunov exponents of an infinite product of matrices [16]. In fact, given a finite
sample of lengthN (and the corresponding matrixF defined as in equation (11)), one can
formally construct the following infinite product of matrices:

· · ·F†F · · ·F†F · · ·F†F · · · . (19)

Such a sequence can be recursively applied tob independent vectors, orthonormalizing
them every single step. Accordingly, one findsb Lyapunov exponents that are nothing but
the logarithms of the (real) eigenvalues ofF†F. The advantage of this procedure over the
standard diagonalization methods is that the orthonormalization can be implemented for all
intermediate steps in the construction ofF (i.e. multiplication by the transfer matricesT
and application of the similarity transformations). This approach has already proved its
effectiveness in the study of the Anderson problem [17].

In practice, the numberM of ‘replicas’ of F†F in (19) is finite: we have chosenM so
as to guarantee at least an accuracy 10−4 for all of the Lyapunov exponents, i.e.M > 2500.
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4.2. Convergence to the asymptotic limit

The main goal of this subsection is to study the convergence ofγi(b,N) towards the set
of self-averaged Lyapunov exponentsγi(b,N →∞) as a function of the sample lengthN
and of the bandwidthb.

We have already seen that BRMs have somewhat peculiar properties which make the
application of the standard scaling theory to Lyapunov exponents problematic. One problem
which, however, makes perfect sense in the context of BRMs, is the identification of a single
relationship expressing the dependence of the Lyapunov exponents on both the sample length
N and the ‘transverse’ widthb. This is an issue that has not yet received a clear exposition
in the two- and three-dimensional Anderson problems [9].

10 20 40
0.0

0.1

1.0

b

δγi

Figure 1. The convergence of the Lyapunov exponentsγi(b,∞) is investigated by plotting the
differenceδγi = γi(b,∞) − γi(∞,∞) versusb. The three data sets refer toi/b = 0.3 (plus
signs), 0.5 (diamonds), and 0.7 (circles). The straight lines follow from a best fit: their slope is
close to−1 in all cases (with deviations of a few per cent).

The natural starting point is represented by equation (18), which gives the localization
length as measured directly from the eigenfunctions of the Hamiltonian. On recalling theb2-
dependence oflq(∞), one realizes that the finite-size corrections depend only on a scaling
parameter, namelyN/b2. Accordingly, one could expect the appropriate scaling relation
for the Lyapunov exponents to be of the type

γi(b,N)/γi(b,∞) = f (i/b,N/b2) (20)

where we have added a dependence oni/b to account for possible differences exhibited by
the various exponents. However, a careful analysis of our data definitely rules out such a
possibility, so one needs to modify the aboveansatzin a more suitable manner. After many
different attempts to find the correct scaling dependence onb andN , we have come to the
conclusion that the most convincing and yet simple scaling hypothesis is that

γi(b,N)/γi(b,∞) = f (γi(b,∞)Nbαi ) (21)

with αi some function of the ratioi/b.
First, it is necessary to determine the asymptotic Lyapunov exponents (N → ∞) for

different bandwidths. In this limit, the ‘contacts’ between the ordered regions and the sample
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play no role, like the similarity transformations involved in the definition ofF. Accordingly,
one can get rid of most of the technical difficulties and determineγi(b,∞) by resorting to
the usual transfer-matrix approach as implemented in reference [2]. The results reported in
figure 1 indicate a convergence of the type 1/b for the bulk of the spectrum.

An effective test of scaling relation (21) can be made after subtracting the asymptotic
value 1 from both sides, i.e. by studying the behaviour of the difference

δγi(b,N) ≡ 1− γi(b,N)/γi(b,∞). (22)

With the asymptotic values ofγi determined, we have plotted the finite-size correction
δγi versus the rescaled sample lengthm = γi(b,∞)Nbαi for different choices ofαi . In
all cases, we find thatδγi is positive, indicating that the convergence to the asymptotic
values is from below. This striking difference from the behaviour of the directly computed
localization length (see equation (18)) is the clearest indication that the influence of the
leads and the type of the contacts results in strong finite-size corrections.

10 100
10

−3

10
−2

10
−1

10
0

10 100
10

−3

10
−2

10
−1

10
0

10 100
10

−3

10
−2

10
−1

10
0

m

δγi

δγi

δγi

(a)

(b)

(c)

Figure 2. Rescaled finite-size correctionsδγi to the Lyapunov exponents versus the rescaled
length of the sample sizem: circles correspond tob = 10, diamonds tob = 20, and plus
signs tob = 40; (a), (b), and (c) correspond toi/b = 0.3, 0.5, and 0.9, respectively. The
straight lines are the best fits. The deviations of the resulting slope from−1 are in all cases
approximately 3%.

The best data collapses obtained fori/b = 0.3, 0.5, and 0.9 are reported in figure 2. In
all cases,f (m) turns out to be essentially equal to 1−A/m with the value ofA depending
very little on i/b (A ≈ 1.1). As anticipated in equation (21), the main dependence oni/b

is contained in the exponentαi which appears to change linearly withi:

αi = i/b − 0.3. (23)
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Notice that the reason for replacing the initialansatzwith equation (21) is contained fully
in the above expression forαi . In fact, equation (20) is consistent with equation (21) only if
αi = −1 for 0< i/b < 1, which is not the case. A partial explanation for this result comes
from the observation that the bulk of the Lyapunov spectra scales in a different way from
the minimum value (to which equation (20) refers). However, this does not fully explain
why the various parts of the Lyapunov spectrum exhibit different convergence properties.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

i/b

χ

Figure 3. The Lyapunov spectrum as determined forb = 10 (circles), 20 (squares), 30
(diamonds), and 40 (triangles).

1 10 100
10

−3

10
−2

10
−1

10
0

m

δγ1

Figure 4. Finite-size corrections to the maximum Lyapunov exponent, using the same rep-
resentation as in figure 2. The slope of the straight line is−1.

A clear counter-example to relationship (23) is found by analysing the behaviour of the
maximal exponent. This is not a surprise, since in reference [2] the existence of a ‘phase
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transition’ in the Lyapunov spectrum occurring approximately ati/b = 0.1 had already been
noticed. This is illustrated in figure 3, whereχ = γii is plotted versusi/b, revealing an
incipient discontinuity in the derivative of the spectrum. It is thus reasonable that different
convergence properties are observed above and belowi/b ≈ 0.1. In fact, we find that
the convergence is of the type 1/N in both cases, but that the value ofα1 is −1 for the
maximum exponent, as seen in figure 4 (it should be recalled thatγ1 exhibits a different
scaling behaviour from that in the bulk of the spectrum, being independent ofb).

1 10 100
10

−2

10
−1

10
0

m

δγb

Figure 5. Finite-size corrections to the minimum Lyapunov exponent, using the same rep-
resentation as in figure 2. The straight line with slope−1 is drawn for reference.

The behaviour of the minimal exponent is another important test, but before discussing
this case, we would like to stress that the scaling ofγb as 1/b2 makes the numerical
computations much more difficult: in fact, it is very hard to get rid of statistical fluctuations
when b becomes relatively large. An indication of this difficulty is already given by the
comparison of the best overlaps obtained in the various cases: increasing fluctuations are
detected upon increasingi/b, testifying to the importance of statistical fluctuations (this is
particularly visible in figure 2(c), i.e. fori/b = 0.9). Nevertheless, one can see in figure 5
that the data collapse is still not bad on assuming thatαb = 0.7, i.e. the value predicted by
the linear law (23). Consistency with equation (20) would requireαb = 0, which definitely
gives a much worse overlap of the various curves and has to be, therefore, ruled out.
Moreover, a regression of the various curves corresponding to different values ofb seems
to suggest that the convergence to the asymptotic value in this last case is slower than 1/N ,
but it is not clear whether this is an artifact due to a lack of sufficient statistics or whether
it is a finite-size (N ) effect.

After having presented a possible unified description of the convergence properties
of ‘finite-length’ Lyapunov exponents, it is worth discussing the origin of the corrections
expressed byf in equation (21). One reason for these corrections is the presence of the
‘contacts’. Since the ‘contacts’ are less disordered than the bulk, one can expect them to
be characterized by a different, smaller, growth rate. The first prediction of this argument
is a negative sign for the correction, i.e. a convergence from below, as is indeed observed.
This accounts for the main difference of the localization properties. Moreover, if this were
the only source of corrections, and if there were no boundary effects between the leads
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and the sample, one should conclude that the relative correction must be proportional to
b/N , i.e. proportional to the ratio between the length of the leads and the length of the
sample. This statement is equivalent to saying that equation (21) holds withα1 = −1
for the maximal Lyapunov exponent. As we have already seen, this prediction is fully
confirmed. Furthermore, direct numerical simulations made to compute the growth rate in
the contacts and that in the sample separately do reveal that the former contribution is half
of the latter, almost independently ofb. This proves directly the correctness of our simple
conjecture.

The same argument, applied to the rest of the spectrum, would imply that the correction
is still of the order ofb/N , which means that theαi-value in equation (21) is zero
independently ofi/b (except for the minimum). Since a strictly positiveαi is found,
instead, fori/b > 0.3, this means that the actual correction is smaller than expected from
the above argument. We can only give a qualitative explanation for the discrepancy: as
long asi/b is strictly larger than 1/b (in the asymptotic limitb→∞), the corresponding
growth rateγi is of the order of 1/b (except for in the limit case of the minimum exponent),
so the contribution to the expansion observed in the ‘contacts’ is not uncoupled from the
expansion in the rest of the sample, and this makes the subdivision of the entire sample
into a bulk and two ‘contacts’ less well defined. Moreover, we should add that, even in the
absence of the leads, finite-size corrections must be present and, as far as we are aware,
there are no theoretical predictions about this kind of correction apart from those for the
maximal exponent [18].

5. Conclusions and a forward look

We have studied finite-length Lyapunov spectra of symmetric band random matrices
describing quasi-one-dimensional and one-dimensional disordered systems with long-range
interactions. Our main goal was to investigate the scaling properties of Lyapunov spectra
upon changing both the bandwidthb and the sample sizeN . To our knowledge, the only
example in the literature where a similar question has been addressed is reference [9], where
the authors have commented on the global scaling behaviour with sample length and strip
width. However, their conjectures are not supported by numerical analysis. Here, instead,
detailed numerical investigations have led us to conjecture that

γi(b,N) ≈ γi(b,∞)− Ab
0.3−(i/b)

N
(24)

for i/b & 0.1. In fact, it was already clear in reference [2] that fori � b the Lyapunov
spectrum exhibits different scaling properties, and, therefore, it is no surprise that the
convergence to the asymptotic shape is also different in the same region. Anyway, the
most important application of the above result is in connection with the conductance in the
localized and metallic regimes. In both regimes, it is the lowest Lyapunov exponents with
i ≈ b that play a major role. Let us, therefore, consider the minimum exponent (i = b).
In this case, in the limitb andN → ∞ but for finite b2/N (the latter is the standard
scaling parameter used to discriminate between metallic and localized regimes), one can
notice that expression (24) implies that the correction term is asymptotically negligible with
respect to the leading termγi(b,∞). The implications of this result for the behaviour of
the conductance are thoroughly analysed in [10].

Even more striking is—at variance with the prediction of the two-dimensional Anderson
model—the negative sign of the finite-size correction terms. This result and, more generally,
the global scaling behaviour can be partly attributed to the influence of the ‘contacts’
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connecting the ordered leads with the disordered sample. However, while the dependence
on b/N for the maximal exponent is also supported by a simple theoretical argument,
the same cannot be said for the other exponents. Nevertheless, we wish to recall that
other combinations of simple functions provide definitely less accurate descriptions of the
observed data. On the other hand, we cannot exclude the possibility that the relative
‘smallness’ of the values ofb andN accessible to a numerical analysis masks a dependence
different from that conjectured in equation (21). We can only stress that the scalingansatzis
chosen as by far the simplest one among a set of otherwise even less convincing alternatives.
In other words, our work represents an instance of the application of Occam’s razor. Thus,
some theoretical progress is needed to shed further light on this problem. This is particularly
true for the minimal exponent, which requires the most delicacy to determine numerically.
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